Robotic Arm

Cole Pace, Caleb Lamca, Kaitlyn Davis Joel Gisleskog, and Colin Donnellan

NORTHERN ARIZONA UNIVERSITY

Project Description

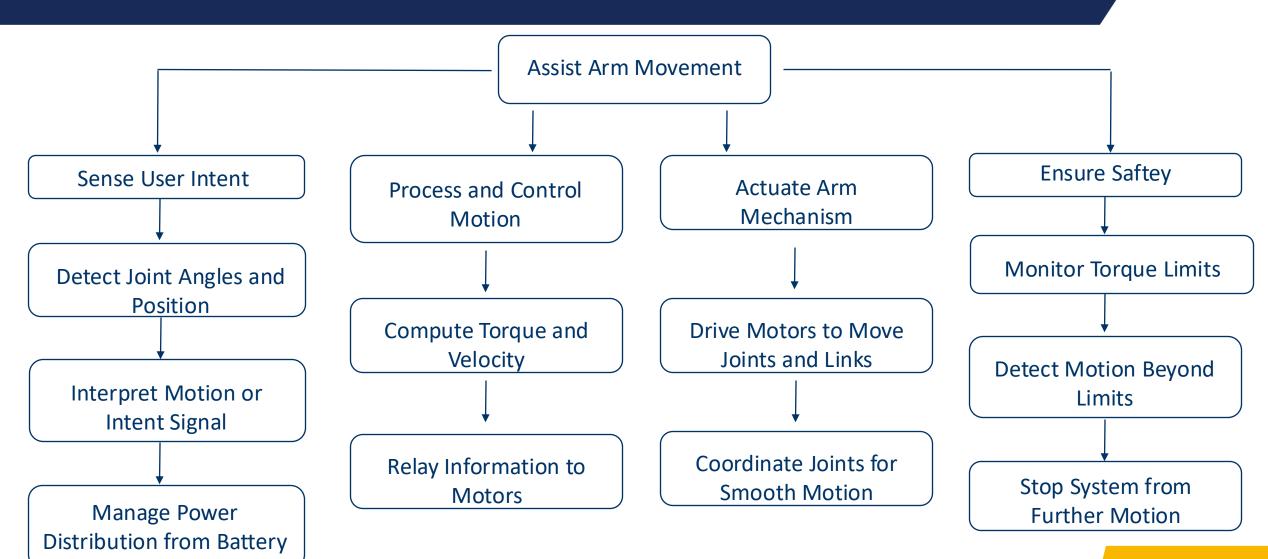
Project Description

- Stroke is the leading cause of upper limb disability.
- Survivors often lose mobility in one arm, limiting daily activities.
- Goal: develop a waist-mounted robotic arm that
 - Offers active gravity compensation
 - Remains lightweight, low-profile, and energy efficient
 - Enables the arm to rest naturally by the user's side.
- Client: Dr. Zach Lerner, Associate Professor of Mechanical Engineering, NAU.
- Sponsorship: W.L Gore

Design Requirements

Customer Requirements

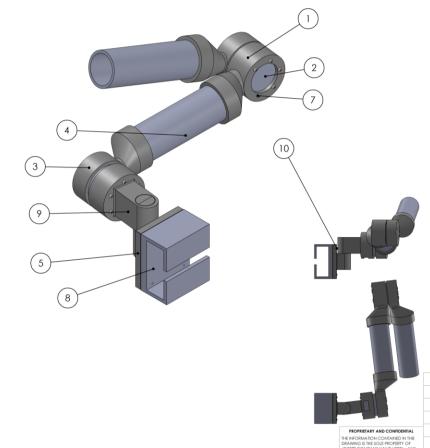
- Comfortability
- Range of Motion
- Safety
- Cost for Consumer
- Durability
- Ease of Use
- Low-Profile


Engineering Requirements

- Degrees of Freedom (3)
- Quality of Components (<\$1400)
- Quality of Materials (<\$1000)
- Manufacturing Costs (<\$1000)
- Torque Speed (70 deg/s)
- Battery Life (approx. 8 hours)
- Weight (< 2 kgs)

Design Requirements QFD

		Degrees of Freedom										
		Quality of Components	pos	1								
		Quality of Materials		neg	1					Corr	elation	
		Manufacturing Cost	ров		pos	1				Positive	pos	
		Torque Speed		pos			1			Negative	neg	
		Battery Life	neg	pos		neg	pos	1				
		Weight	pos	pos	pos	pos	pos	pos	1			
			1/1	En	gineer	ring Re	quire	ments			Benchmar	king
Relative Weight (%)	Customer Weights	Customer Requirments	Degrees of Freedom	Quality of Components	Quality of Materials	Manufacturing Cost	Torque Speed	Battery Life	Weight	Poor	Adequate	Excellen
11	4	Comfortable	3	3	3	1	3	3	9		С	AB
22	5	Range of Motion	9	3	3	1	1	1	1	A	В	С
10	5	Safety	3	9	9	1	9	1	3		1	ABC
10	2	Cost for Consumer	3	9	9	9	3	3	3	AC	В	
	3	Durabiltiy	1	9	9	1	1	1	9		В	AC
5	4	Ease-of-use	9	3	3	1	9	3	3	BC	A	
5				1	3	3	3	9	9	ABC		
-	3	Low-Profile	3	1								
5		Low-Profile Technical Requirement Units	y _N			8	0 / 5	Hours	No.			

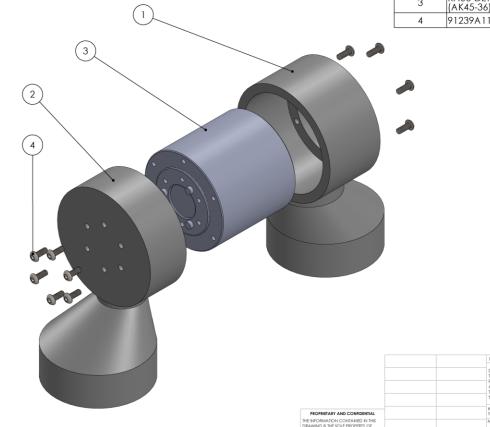

Functional Decomposition

Top Level Design Model

Top Level Design Function:

- Hinge subassembly at the hip to manually control DoF
- 1st motor & joint subassembly
 - Motor mount stabilizes
 motor during actuation. This
 actuation articulates the first
 link
- 2nd motor & joint subassembly
 - This second motor and link extends the reach of the arm and determines the final position of the arm.
- Ultimate control of the end effector

ITEM NO.	PART NUMBER	DESCRIPTION	QTY.
1	RA06-DET009 (Motor Mount)		1
2	RA06-DET005-ASSEM (AK45-36)		2
3	RA06-DET009-02		2
4	PVC Pipe		2
5	RA06-DET010-02 (Hinge Bottom)		1
6	RA06-DET001 (Waist Belt)	Waist Belt	1
7	91239A113	Button Head Hex Drive Screw	22
8	RA06-DET002 (Arm Support Clip)	Support for Arm to User	1
9	RA06-DET011-03		1
10	91239A811	Button Head Hex Drive Screw	4
		·	


	UNLESS OTHERWISE SPECIFIED:		NAME	DATE	
	DIMENSIONS ARE IN INCHES	DRAWN	C. Lamca		
	TOLERANCES: FRACTIONAL±	CHECKED			TITLE:
	ANGULAR: MACH± BEND ± TWO PLACE DECIMAL ± THREE PLACE DECIMAL ±	ENG APPR.			Top Level Des
		MFG APPR.			TOP LEVEL DES
	INTERPRET GEOMETRIC	Q.A.			
	TOLERANCING PER:	COMMENTS:			
	MATERIAL				SIZE DWG. NO. PAO6-ASSEM-02

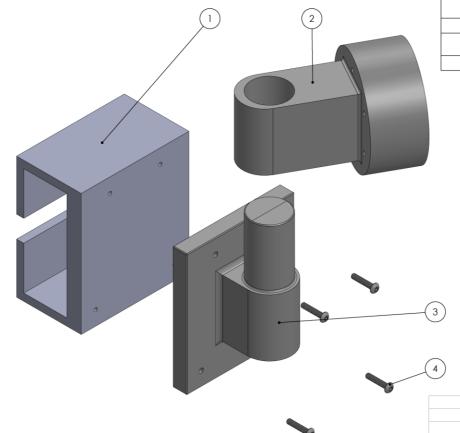
*Refer to page 1 for functions and page 2 for enlarged model

Subassembly Model 1 – Joint

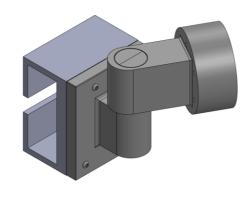
Joint Subassembly Function:

- Motor mount (right) holds motor with 5 screws to stabilize
- The motors extruded pins locate into holes on the inner wall of the next mount (left) and secured by 6 screws
- As the motor operates, the right-side mount stays static and the left mount articulates the link (not pictured)

ITEM NO.	PART NUMBER	DESCRIPTION	QTY.
	RA06-DET009 (Motor Mount)		1
2	RA06-DET009-02		1
3	RA06-DET005-ASSEM (AK45-36)		1
4	91239A113	Button Head Hex Drive Screw	11


	MIGATIK.	-	CI		مام	l, ,
INTERPRET GEOMETRIC TOLERANCING PER:	Q.A.	-	Subassembly			
MATERIAL	COMMENTS:	SIZE DWG. NO.				REV
FINISH		В	KA	100-20B-10	IINI	
DO NOT SCALE DRAWING		SCA	LE: 1:4	WEIGHT:	SHEE	T 1 OF 1

Joint


Subassembly 2 Model - Hinge

Hinge Subassembly Function:

- Hinge subassembly is fixed to the waist belt (not pictured) via the belt clip
- 1st motor mount slides onto the hinge shaft
- At the use moves their arms orientation from in front to the side, the hinge will pivot around the shaft, controlling this DoF

		UNLESS OTHERWISE SPECIFIED:		NAME	DATE		
				C. Lamca	DATE	-	
		DIMENSIONS ARE IN INCHES TOLERANCES:	DRAWN	C. Lumcu		TITLE	
		FRACTIONAL±	CHECKED			TITLE	
		ANGULAR: MACH± BEND ± TWO PLACE DECIMAL ±	ENG APPR.				
		THREE PLACE DECIMAL ±	MFG APPR.				
		INTERPRET GEOMETRIC	Q.A.				
		TOLERANCING PER:	COMMENTS:				
		MATERIAL					
NEXT ASSY	USED ON	FINISH				В	
	0.471011	0.0 1107 1011 5 001111110				CC A	

Hinge Subassembly SIZE DWG. NO. RAO6-SUB-HINGE

*Refer to page 1 for functions and page 4 for enlarged model

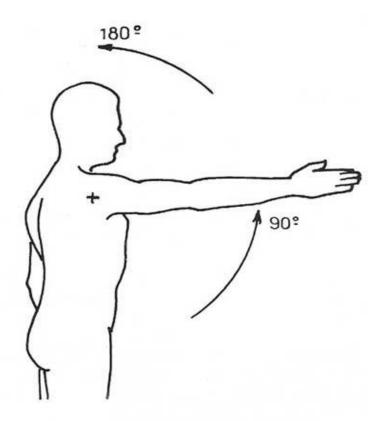
Battery Run Time Calculation

What is the time that the two battery can last for the motors while being used?

Battery Given was HRB 1800mAh 6S 22.2V 50C LiPo Battery by our client.

The motor we our using is the AK 45-36 motor which has a rated voltage and current were found from

$$Run\ Time = \frac{Battery\ Voltage \cdot Battery\ Capacity}{Number\ of\ motors \cdot (Rated\ Voltage \cdot Rated\ Current)}$$

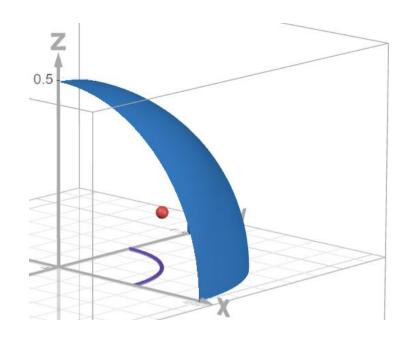

$$Run\ Time = \frac{22.2\ V \cdot 3.6\ Ah}{2 \cdot (24\ V \cdot 2\ A)} \approx 49\ minutes$$

Engineering Calculations

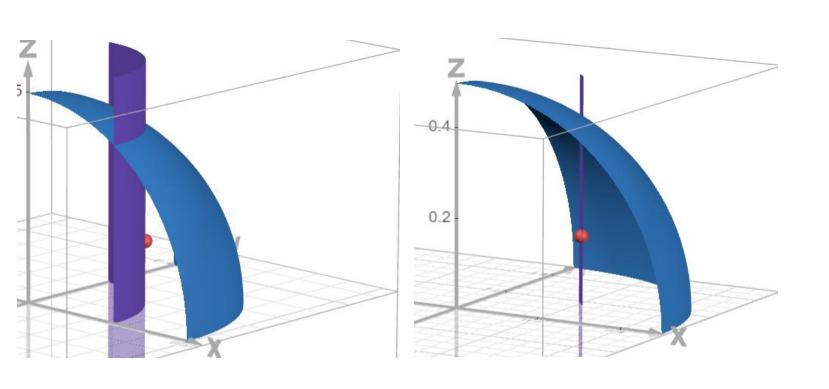
- Arm (shoulder flexion) velocity
- Shoulder flexion from hanging straight down (0 degrees) to straight forward (90 degrees)
- Average shoulder to elbow length: 330mm (13in)
- Average angular velocity: $w_{avg} = \frac{\Delta \theta}{Time \ t}$
- Using $\Delta \theta$ = 90 degrees and time 1.28 seconds.

•
$$w_{avg} = \frac{\Delta \theta}{Time \ t} = 1.227 \frac{rad}{s}$$

• Linear velocity (elbow): $v = w_{avg} * r = 0.405 \frac{m}{s}$



Engineering Calculations – Arm Position (inverse Kinematics)


$$FK = T_0^2 = R_z(\varphi)R_y(+)(\theta_1) T_x(L) R_y(+)(\theta_2) T_x(L)$$

$$x,y,z=(200,180,150)mm$$

$$d=\sqrt{(200^2+180^2+150^2)}\approx 308mm \leq 496mm$$

$$\varphi=atan2(y,x)=atan2(180,200)\approx 41.99^\circ$$
 $z\ rotation\ aligns\ target\ in\ 2D\ r-z\ plane$
$$r=\sqrt{x^2+y^2}$$

 $d = \sqrt{r^2 + z^2}$

Engineering Calcs (IK)

$$\cos(\theta_2) = \frac{d^2 - L^2 - L^2}{2L^2}$$

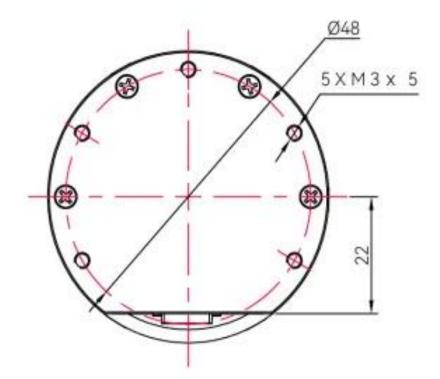
$$\alpha = atan2(z, r)$$

$$\beta = atan2(Lsin(\theta_2) + lcos(\theta_2))$$

$$\theta_1 = \alpha - \beta$$

$$\varphi = 41.99^{\circ}$$

$$\theta_1 = -22.47^{\circ}$$


$$\theta_2 = 103.21^{\circ}$$

Motor Mount Shear

 What is the minimum thickness for the motor mount to withstand maximum shear?

$$\tau = \frac{F_{bolt}}{t*h}$$

$$F_{bolt} = \frac{T_{design}}{r*n} \text{ , where n = number of bolts}$$

$$T_{design} = 24 N*m$$

$$\tau = \frac{40 N}{t} < 11.4 MPa$$

• t must be larger than 3.5 mm to withstand maximum shear stress.

FEA – Hinge Shaft

- Bending on the hinge shaft due to the torque of the arm
- Calculated the sum of moments from each component at maximum extension from the body
- Modeled custom PLA material in SolidWorks to achieve a realistic analysis
- FoS was found to be around 50.

FEA for Hinge Shaft

Mass (g)	Distance from Hinge Shaft (mm)	Detail	Moment $(g*mm)$
115	250	Motor Mount 1	28750
101	250	Motor Mount 2	25250
6.05	250	Bolts	1512.5
340	250	Motor 2	85000
115	120	PVC 1	13800
115	300	PVC 2	34500
		Total Moment	188813
		$(g\cdot mm\)$	100013
		Total Moment	1851.6
		$(N \cdot mm)$	1001.0

$$M = F \cdot L$$

$$F = \frac{M}{L}$$
, where M is the total moment and L is the diameter of the top of the shaft

$$F = \frac{1851.6 (N \cdot mm)}{25 (mm)} = 74.064 N$$
, used to create the couple moment on the top of the shaft

FEA – Hinge Shaft Simulation Results

Property	Value	Units
Elastic Modulus	3500000000	N/m^2
Poisson's Ratio	0.36	N/A
Shear Modulus	1300000000	N/m^2
Mass Density	1240	kg/m^3
Tensile Strength	60000000	N/m^2
Compressive Strength	65000000	N/m^2
Yield Strength	50000000	N/m^2

[2] Material properties of PLA

Simulation Results:

Maximum Stress: **9.8*10^5 N/m^2**

Maximum Deformation: 0.019 mm

Factor of Safety: >50

Bill of Materials

Item	Price
2 AK45-36 motor (purchased)	\$371.80
3D filament (purchased)	\$35.99
Battery (purchased)	\$67.12
Waist belt (purchased)	\$107.74
Hinge	\$15

FMEA

Part # and Functions	Potential Failure Mode	Potential Effect(s) of Failure	Potential Causes and Mechanisms of Failure	RPN	Recommended Action
Link 1,	3d printed link breaks under stress of the motor torque and the weight of the arm	the 3d printed material could crack and splinter pieces but these would be low velocity. Arm could collapse therfore loss of support could injur clients arm.	failure in control of motor causing it to spin past the rotation we want.wall thickness of printed geometry could be too thin.	140	test different materials at different torque speeds and find what will not break. Also include FEA of material and geometry
Link 2	fracture under impact	loss of elbow support / robitc arm/ ability.	thin wall, large impact, poor printing material.	140	thicken wall, try different material.
	1:heat overload/ stall	motor shutdown, motor may heat up could cause burining around 3d printed areas. Arm could freeze mid motion	torque demand too high, no proper cooling method. Software malfunction	108	improve ventilation, invest in a heat sink.
Motor 1 (base)	2: coil winding damage	electrical short causing potential fire and loss of drive	moisture in motor, poor insulation		Add waterproof cover to prvent moisture getting in.
Motor 2	thermal overload	motor shutdown, motor may heat up could cause burining around 3d printed areas. Arm could freeze mid motion	continuous load, user leaning heavily on elbow cup.	112	add torque limit and thermal cutoff. Improve ventilation.

Gisleskog 17

FMEA

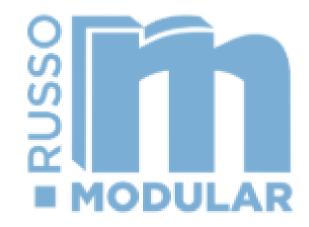
			the robotic arm could drop and cause damage or injury to client			to use a industry standard belt, add secondary safety tether.
waist belt	d	:buckle or strap tear or letachment 2: belt slippage during use	Poor control, cause unexpected motion which could damage equipment or harm client	fatigue or overload of belt or other mecanichal componetns poor fabric friction, belt not in high enough tension / not secure around the waist	144	Additional tether added to reduced slip chance, extra friction pads
				screws/bolts too lose or too tight weak hinge		invest in a reliable hinge or
	С	rack or deformation		condition. Undersized pin,		prototype to find a better
hinge	а	around bolt holes.	0	poor alignment	105	joint.
motor mou	I .	rack or deformation around bolt holes.	motor misalignment, large vibration screw/nut slipping out. Could cause the arm to fall and smash sudden movemnet may hurt client.	over tightning of screws /bolts. Poor print orientation	140	re print piece checking print orientation.
						material.
		: battery pack overheating/ shorting	a short or overheating could cause a combustion causing a fire. System reset could cause jarring/sporadic movement.	physical damage to the battery or a internal short. Vibration in battery, poor		Use locking or threading connectors to stop vibrations from loosening the wires add capacitor bank to smooth voltage
battery pa	ick 2	connector loosened	Could potentially injure client		l .	spikes.

Testing Procedures

Future Testing:

- Impact Test
 - Measure the arms ability to withstand an impact using a wall or other natural environment
- Weight
 - Measure the weight of the arm using a scale to maintain a reasonable weight
- Battery Endurance Test
 - Measure how long the battery can last with motors in use and not in use
- Mobility test
 - Device to see if all degrees of freedom are met
- Activity Test
 - Space to perform various everyday activities and evaluate the arms effectiveness

Budget


- Funding from W.L Gore: \$4000
- NAU 5% processing fee: -\$200
- Fundraising (at least %10): \$400
- Total Est. Budget: \$4200

 We have an estimate of \$3675 for total cost of possible items. The team will have a remaining balance of \$525. We will need to fundraise more to begin prototyping.

	Expenses	
Category	rtems(s)	Cost
Tools and materials:	3D printer Parts	\$100
	3D printer Filament	\$35.99
Manufacturing:		\$300
Parts:	Motors	\$371.80
	Battery	\$67.12
	Miscellaneous Parts	\$700
Prototyping:	1st	\$1200
	2nd	\$900
TOTAL:		\$3674.91

Fundraising

- Need to accumulate 10% of the \$4,000 budget for a minimum of \$400 total
- In talks with multiple companies regarding sponsorships, services, or cash donations
- We plan to fundraise the entire 10% by the time of testing of prototype 1

Schedule

Plan duration

Actual Start

Completed

Beyond Completion

	August				September				October				November				December		
				wk1	wk2	wk3	wk4	wk5	wk6	wk7	wk8	wk9	wk10	wk11	wk12	wk13	wk14	wk15	wk16
Requirements/ research																			
Equations																			
Presentation 1																			
Conceptual designs																			
Fundraising																			
Presentation 2																			
Begin modelling																			
Testing prototype 1																			
Presentation 3																			
1st Prototype Demo																			
Begin prototype 2																			
Testing for Prototype 2																			
2nd Prototype Demo																	_		

Thank you And Any Questions?

Appendix

- [1] "AK45-36 Robotic Actuator Ultra-High Torque, 36:1 Gear Ratio," *CubeMars*, 2025. https://www.cubemars.com/product/AK45-36.html
- Mechanical and Geometric Performance of PLA-Based Polymer Composites Processed by the Fused Filament Fabrication Additive Manufacturing Technique - PMC
- [2] S. Farah, D. G. Anderson, and R. Langer, "Physical and mechanical properties of PLA, and their functions in widespread applications A comprehensive review," MIT, 2016. [Online]. Available:
- https://dspace.mit.edu/bitstream/handle/1721.1/112940/Anderson_Physical%20and%20mechanical%20properties.pdf?sequence=1